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Abstract

The numerical quantization method is a grid method which relies on the approx-

imation of the solution of a nonlinear problem by piecewise constant functions. Its

purpose is to compute a large number of conditional expectations along the path of

the associated diffusion process. We give here an improvement of this method by

describing a first order scheme based on piecewise linear approximations. Main ingre-

dients are correction terms in the transition probability weights. We emphasize the

fact that in the case of optimal quantization, many of these correcting terms vanish.

We think that this is a strong argument to use it. The problem of pricing and hedging

American options is investigated and a priori estimates of the errors are proposed.
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1 Introduction

The numerical quantization method has been introduced in [1, 3, 4]. It is a grid method

which is conceived in order to solve non linear problems in large dimension. Since the

problems which we have in mind have a P.D.E. formulation, analytical methods like finite

differences or finite elements are candidates in order to solve such problems but it is well

known that the implementation of this type of methods is rather difficult in dimension

larger than three. So one would like to use some probabilistic methods of Monte Carlo type

(which have the advantage of being dimension free). But this may not be done directly

for non linear problems because the resolution of such problems suppose the computation

of a large number of conditional expectations and not only of a single expectation. The

numerical quantization method is in-between the analytical approach and the Monte Carlo

method. One uses some grids and some weights (like in the finite element method) but the

weights are computed using a Monte Carlo method. Although the error depends on the

dimension as in the analytical methods, the advantage of using Monte Carlo is that one
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may implement such algorithms in dimension larger then 3 (typically up to 10 - beyond,

the number of points needed in the grids becomes huge).

The aim of this paper is to give a more efficient version of this algorithm. Roughly

speaking, in [1, 2, 3, 4] we have studied approximation schemes of order zero and now

we give approximation schemes of order one. Basically the schemes of order zero produce

piecewise constant approximations of the functions at hand and consequently use the

information at one point only: the center of the cell on which the approximation of the

function is constant. The schemes of order one use linear interpolation and so put to work

several points: the center of the cell but also the centers of its neighbors. For example

the basic finite element method is an algorithm of order one because it is based on linear

interpolations. If one uses polynomial interpolations then one obtains schemes of higher

order (but of course the algorithm becomes much more complex). In our frame we use the

Malliavin integration by parts formula in order to compute some correctors which produce

piecewise linear interpolations. The attractive thing in our approach is that although the

scheme becomes more complicated as we pass from a 0th-order scheme to a 1st-order

scheme, the complexity of the algorithm remains of the same order and the correctors

which come in are of the same nature. Consequently they may be computed rather simply

by the Monte Carlo method with the sample used to compute the weights coming on in

the original 0th-order method.

As emphasized in Section 3, there are two types of projection errors coming in our

algorithm, say top and bottom errors. So, a priori we need two types of correctors concern-

ing each of these errors. But it turns out that, if we use optimal grids (in the quantization

sense) the bottom correctors naturally vanish. This is an enlightening fact concerning

optimal quantization and a strong argument to use it.

The numerical quantization represents a quite general approach to non-linear problems

because its main purpose is to compute a large number of conditional expectations along

the path of a diffusion process (see Section 3.3). But our specific initial motivation comes

from pricing American options, which is an optimal stopping problem and so a typical

non-linear problem. In this paper we also focus on this problem in order to illustrate the

method.

Finally, we mention that the first order correctors are closely related to the hedging

strategy, so we can produce as well some proxy of this hedging strategy as a by-product

of this first order scheme (see [2] for an extensive discussion of hedging by quantization).
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2 The basic algorithm for pricing American options

2.1 The problem

We consider a market model containing a risk-less asset S0
t and a d-dimensional risky asset

St ∈ Rd, 0 ≤ t ≤ T, whose dynamics read

dS0
t = S0

t r dt, S0
0 = 1,

dSt = Diag(St)(r 1 dt + σ(t, St)dBt), S0 = 1.

Here r denotes the interest rate, σ is the volatility function and Bt is a standard d-

dimensional Brownian Motion on some probability space (Ω,F , P ) and (Ft)0≤t≤T its stan-

dard filtration. T is a fixed time (maturity). In order to avoid some rather complicated

formulae in our computations it is convenient to work with Xt := log St instead of St itself.

It is easy to see that the dynamics of X obey

dXt = σ(t, Xt)dBt + b(t,Xt)dt, X0 = x := log s0

with σ(t, x) = σ(t, ex), b(t, x) = r − 1
2Tr(σσ∗)(t, ex).

Moreover, we consider a payoff function h : [0, T ]×Rd → R and we want to price an

American option with payoff h. The price at time t∈ [0, T ] is given by

Yt = esssupτ∈Tt,T
E(h(τ,Xτ )|Ft)

where Tt,T denotes the set of all [t, T ]-valued stopping times. This is the Snell envelope of

the semi-martingale h(t, Xt) (if h is sufficiently smooth). It is well known that no closed

formula holds for Y so we will consider a discrete approximation. To process, we consider

the Euler scheme of step T
n ,

Xtk+1
:= Xtk + b(tk,Xtk)

T

n
+ σ(tk, Xtk)∆k+1, X0 := x,

where tk := k
nT and ∆k+1 := Btk+1

− Btk . In order to simplify the notation we put

Xk := Xtk , σk(x) := σ(tk, x) and bk(x) := b(tk, x) so that we are concerned with the

(Ftk)0≤k≤n-Markov chain (Xk)0≤k≤n recursively defined by

Xk+1 = Xk + bk(Xk)
T

n
+ σk(Xk)∆k+1, X0 = x.

Then the discrete version of Y is defined by Y tk = esssupτ∈T tk,T
E(hk(Xτ )|Ftk) where

hk(x) := h(tk, x) and T tk,T denotes the set of all the (Fti)0≤i≤,n discrete stopping times

which take values in {k, . . . , n}. We will work under two different sets of hypothesis:

(H1)





(i) b, σ are continuously differentiable with bounded derivatives and h is

Lipschitz continuous functions.

(ii) σσ∗ ≥ c Id where c > 0 and Id is the identity matrix.
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or

(H2)





(i) b, σ are continuously differentiable with bounded derivatives and h is

is Lipschitz continuous in t and semi-convex in x.

(ii) σσ∗ ≥ c Id, c > 0.

A precise definition of semi-convex functions is given in [3] (in particular Lipschitz

continuous convex functions are semi-convex as well as twice differentiable functions with

bounded derivatives). It is proved in [4] that under these hypothesis

(
Emax

k≤n

∣∣Ytk − Y tk

∣∣2
)1/2

≤ C

nα
(2.1)

with α = 1
2 under (H1) and α = 1 under (H2) (provided one uses the true “sampled”

diffusion (Xtk)0≤k≤n as the Markov chain to be quantized instead of its Euler scheme).

Now we compute Y tk using the dynamical programing principle:

Y tn = hn(Xn)

Y tk = max
(
hk(Xk),E(Y tk+1

|Ftk)
)
.

The analytical counterpart of this scheme is obtained in the following way. One con-

structs recursively the functions uk by

un(x) = hn(x)

uk(x) = max (hk(x),E(uk+1(Xk+1)|Xk = x)) .

Then Y tk = uk(Xk) and consequently, up to the approximation of Y by Y , the price at

time zero is given by u0(x) = u0(log s0).

2.2 The basic algorithm

We want to produce an algorithm in order to compute uk. The difficult point will be of

course to design an efficient method to compute E(uk+1(Xk+1)|Xk = x), k = 0, . . . , n. It

is clear that we cannot do it for every point x ∈ Rd, so we will settle some space grids

Γk = {x1
k, . . . , x

Nk
k } ⊂ Rd, k = 0, . . . , n, one for each epoch tk = kT

n . The way we choose

the size Nk of the grid and the location of the points xi
k of the grid Γk play a crucial part

and the numerical efficiency of the algorithm heavily depends on this choice. But these

problems have already been extensively discussed in [3] and so we leave them out here. So,

in this paper the grids Γk, k = 0, . . . , n are some exogenously designed objects. Moreover

we define the Voronoi tessel of xi
k by

Ci
k := {u ∈ Rd /

∣∣u− xi
k

∣∣ ≤ inf
0≤j≤Nk

∣∣∣u− xj
k

∣∣∣}

and we denote by Πk the projection on the grid Γk i.e. Πk(u) :=
∑Nk

i=1 xi
k1Ci

k
(u). Note

that Ci
k, , i = 1, . . . , n, is not a true partition of Rd because the different tessels have
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boundary hyperplanes in common. But this is just a formal disagreement because the

laws of the random variables we work with are absolutely continuous and so give no mass

to hyperplanes. The basic idea is to approximate

E(uk+1(Xk+1)|Xk = xi
k) ≈ E(uk+1(Πk+1(Xk+1)|Πk(Xk) = xi

k). (2.2)

Note that

E(uk+1(Πk+1(Xk+1)) | Πk(Xk) = xi
k) =

Nk+1∑

j=1

uk+1(x
j
k+1)E(1

Cj
k+1

(Xk+1))|1Ci
k
(Xk))

=
Nk+1∑

j=1

uk+1(x
j
k+1)π

ij
k

with πij
k :=

P(Xk+1 ∈ Cj
k+1, Xk ∈ Ci

k)
P(Xk ∈ Ci

k)
.

The πij
k ’s are the weights in the algorithm and we compute them using a Monte Carlo

simulation. The important point here is that we may compute all πij
k , i = 1, . . . , Nk, j =

1, . . . , Nk+1, k = 0, . . . , n using the same sample (X1
k)0≤k≤n, . . . , (XM

k )0≤k≤n of the chain

(Xk)0≤k≤n (see [3]). In fact

πij
k ∼ π̂ij

k =:

∑M
m=1 1

Cj
k+1

(Xm
k+1)1Ci

k
(Xm

k )
∑M

m=1 1Ci
k
(Xm

k )
. (2.3)

So we avoid using different Monte Carlo procedures in order to compute the conditional

expectation at each point, which would be extremely expensive. In this sense our algorithm

may be seen as a compressed Monte Carlo Method. Now the algorithm reads

ûn(xi
n) = hn(xi

n), i = 1, . . . , Nn, (2.4)

ûk(xi
k) = max


hk(xi

k),
Nk+1∑

j=1

πij
k ûk+1(x

j
k+1)


 , k = 0, . . . , n.

Of course in true applications we do not know πij
k , so we use π̂ij

k . This introduces one

further error – the statistical error – which is not discussed here (see [4]).

This is our basic algorithm. It is an algorithm of order zero because we replace uk+1(x)

by uk+1(Πk+1(x)) =
∑Nk+1

j=1 xj
k+11Cj

k+1
(x) and Xk (with respect to which one takes con-

ditional expectation) by Πk(Xk) =
∑Nk

i=1 xi
k1Ci

k
(Xk). So we work with piecewise constant

functions.

2.3 Optimal grids and error estimates

We give now some error evaluations which are obtained in [4]. First, one proves that

(
E max

k≤n
|Ytk − ûk(Πk(Xk))|2

)1/2

≤ C

nα
+

n∑

k=0

Ck

(
E |Xk −Πk(Xk)|2

)1/2
(2.5)
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with α = 1
2 under (H1) and α = 1 under (H2).

The grids we use are optimal in the following sense. One defines the distortion of a

grid Γ := {x1, . . . , xNk} (with obvious notations) as

(DXk
(Γ))2 := E |Xk −ΠΓ(Xk)|2 =

Nk∑

i=1

E(|Xk − xi|21Ci
Γ
(Xk)). (2.6)

A grid Γk is optimal if

DXk
(Γk) = inf

Γ,|Γ|≤Nk

DXk
(Γ).

A basic result from the quantization theory (the Bucklew & Wise Theorem - see [3, 5, 6]

for the precise result) asserts that, if the grid is optimal, then there exists a real constant

C2 such that

(DXk
(Γk))1/2 =

(
E(|Xk −ΠΓk

(Xk)|2
)1/2 ≤ C2

N
1/d
k

. (2.7)

Plugging (2.7) in (2.5) and using the structure of the constants Ck in (2.5) make it

possible to tune the Nk’s in an optimal way: this is achieved in [4]. Since in this paper we

are simply interested in the asymptotic order, we leave out this slightly more sophisticated

analysis and express the above error in terms of N := max0≤k≤n Nk.

Proposition 1 Assume that (2.7) holds true and Nk ≤ N, k = 1, . . . , n. Then

(
E max

k≤n
|Ytk − ûk(Πk(Xk))|2

)1/2

≤ C

(
1
nα

+
n

N1/d

)
(2.8)

with α = 1
2 under (H1) and α = 1 under (H2).

Let us take one step beyond into the numerical properties of optimal grids. Since

Γk := {x1
k, . . . , x

Nk} achieves the minimum, formal derivation in (2.6) (see [6] for the

complete argument) yields

∂

∂xi
k

(DXk
(Γk))

2 = 2E((Xk − xi
k)1Ci

k
(Xk)) = 0. (2.9)

We will show in the next section that optimal grids produce an error of order N−2/d

instead of N−1/d and the relation (2.9) represents the key argument: it says that, if the

grid is optimal, then the terms of order one in a certain Taylor expansion of order two

vanish.

3 Correctors of order one

In the approximation presented in (2.2) there are two different projection errors corres-

ponding to Πk (“bottom”) and Πk+1 (“top”). The aim of this section is to produce some

correctors which reduce these errors. In order to enlighten the notations we put X̂k =

Πk(Xk).
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3.1 The basic integration by parts formula

In our very elementary setting the Malliavin integration by parts formula reads as follows.

Given two differentiable functions f, g : Rd → R, and any real constant C,

E
(

∂f

∂xi
(∆k+1)g(∆k+1)

)
= −E

(
(f(∆k+1) + C)

(
∂g

∂xi
(∆k+1)− n

T
∆i

k+1g(∆k+1)
))

.

(3.1)

The proof is obtained by a usual integration by parts (with respect to the Gaussian

distribution). It represents the starting point of the Malliavin calculus - which goes far

away - but we stop here.

It seems natural to take C = 0 in the above formula because anyway ∇(f + C) = ∇f.

But in our frame f appears as an a priori given function and the fact that we have the

freedom of choosing any C is crucial for simulation. The practical way of using this formula

is to employ the Monte Carlo method for computing the expectation in the right hand

side in order to obtain the expectation in the left hand side. So we would like to simulate

the expectation of some variable with a small variation and consequently we would choose

C = −E(f(∆k+1)) (if we know it) for example.

Now let U : Rd → R be a measurable function with polynomial growth (so that

U(Xk+1) is integrable). We define

PkU(x) := E(U(Xk+1)|Xk = x)

which represents the transition kernel of the Euler Scheme. The problem is to compute

the derivatives of PkU . One defines

θk(x, y) := x + bk(x)
T

n
+ σk(x)y so that Xk+1 = θk(Xk, ∆k+1)

and PkU(x) = E(U(θk(x,∆k+1))). Moreover, since σk is invertible, one may define

λk(x, y) := σ−1
k (x)×∇xθk(x, y) and (3.2)

ρ`
k(x, y) := −

d∑

`′=1

(
∂λ`′`

k

∂y`′
(x, y)− n

T
y`′λ

`′`
k (x, y)

)
, ` = 1, . . . , d.

Lemma 1 The partial derivatives of PkU are given by

∂PkU

∂x`
(x) = E((U(θk(x,∆k+1))− C(x))ρ`

k(x,∆k+1)), ` = 1, . . . , d, (3.3)

where C is any real function.

Proof. One may assume w.l.g. that U is smooth. Note that ∇y(U ◦ θk) = (∇U) ◦ θk ×
∇yθk = (∇U) ◦ θk × σk and so (∇U) ◦ θk = ∇y(U ◦ θk)× σ−1

k . It follows that

∇PkU(x) = E((∇U)(θk(x,∆k+1))∇xθk(x,∆k+1)) = E(∇y(U ◦ θk)(x,∆k+1)λk(x,∆k+1))

and now (3.3) follows from (3.1) with C = C(x). ¤
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Remark. Let us emphasize the simple but important example of constant volatility σk

and constant drift coefficient bk (the log-normal model corresponding to the classical Black-

Scholes model). Then θk(x, y) = x+bk
T
n +σky, λk(x, y) = σ−1

k and so ρ`
k(x, y) = n

T (yσ−1
k )`.

Finally we give some a priori estimates used to evaluate errors.

Proposition 2 Assume that U is [U ]1-Lipschitz continuous. Then,
∥∥∥∥
∂PkU

∂x`

∥∥∥∥
∞
≤ C[U ]1 and

∥∥∥∥
∂2PkU

∂x`∂x`′

∥∥∥∥
∞
≤ C[U ]1

√
n, `, `′∈ {1, . . . , d}. (3.4)

Proof. The first inequality in (3.4) is obtained by direct calculation and the second one

is obtained using integration by parts once. integration by parts once ¤

3.2 The Πk projection error (or bottom error)

We consider the same measurable function U as in the previous subsection and we want

to approximate PkU(xi
k). So, we define

φk
U (xi

k) :=
E(U(Xk+1)1Ci

k
(Xk))

P(Xk ∈ Ci
k)

.

Note that, if U(x) = 1
Cj

k+1
(x) then φk

U (xi
k) = πij

k , i.e. the standard weight we use in our

algorithm. We write

E(U(Xk+1)1Ci
k
(Xk)) = E(PkU(Xk)1Ci

k
(Xk)) = PkU(xi

k)P(Xk ∈ Ci
k) + εi

k

with
Nk∑

i=1

∣∣εi
k

∣∣ ≤ [PkU ]1E |Xk −Πk(Xk)| ≤ C[PkU ]1
N1/d

the last inequality being a consequence of (2.7). In particular the above relation gives

PkU(xi
k) = φk

U (xi
k)− εi

k/P(Xk ∈ Ci
k) and so

E
∣∣∣PkU(X̂k)− φU

k (X̂k)
∣∣∣ =

Nk∑

i=1

E(
∣∣∣PkU(X̂k)− φU

k (X̂k)
∣∣∣1{Xk∈Ci

k})

=
Nk∑

i=1

∣∣PkU(xi
k)− φU

k (xi
k)

∣∣P(Xk ∈ Ci
k) ≤

C[PkU ]1
N1/d

.

The aim of this section is to prove that, as a consequence of the optimality of the grid,

the above error is of order
√

n

N2/d
instead of

1
N1/d

.

Proposition 3 Assume that U is Lipschitz continuous and that the grid Γk is optimal,

so that (2.9) holds true. Then

E
∣∣∣PkU(X̂k)− φU

k (X̂k)
∣∣∣ ≤ C[U ]1

√
n

N2/d
. (3.5)
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Proof. We use the Markov property and a Taylor expansion of PkU :

E(U(Xk+1)1Ci
k
(Xk)) = E(PkU(Xk)1Ci

k
(Xk)) = PkU(xi

k)P(Xk ∈ Ci
k)

+
d∑

`=1

∂PkU

∂x`
(xi

k)E((Xk − xi
k)`1Ci

k
(Xk)) + Ri

k

with (see (3.4))
Nk∑

i=1

∣∣Ri
k

∣∣ ≤ ∥∥∂2PkU
∥∥
∞
E |Xk −Πk(Xk)|2 ≤ C[U ]1

√
n

N2/d
.

Since the grid is optimal, E((Xk − xi
k)

`1Ci
k
(Xk)) = 0 and the proof is complete. ¤

3.3 The Πk+1 projection error (or top error)

The aim of this section is to compute φU
k (xi

k). We cannot solve our problem for a general

measurable function U so we need U to have the special form

U(x) = Pk+1V (x) := E(V (Xk+2)|Xk+1 = x).

Moreover, in order to obtain reasonable error estimates, we assume that V = Pk+2W for

some bounded measurable function W . This may be seen as a regularity property for

V , (in particular V is Lipschitz continuous). Assume temporarily that W is Lipschitz

continuous as well. Then, as a consequence of (3.4),
∥∥∥∥

∂2U

∂x`∂x`′

∥∥∥∥
∞
≤ C[V ]1

√
n and

∥∥∥∥
∂V

∂xl

∥∥∥∥
∞
≤ C[W ]1, `, `′∈ {1, . . . , d}. (3.6)

We define the new weights by setting

π`,ijr
k :=

E(ρ`
k+1(Xk+1, ∆k+2)(Xk+1 − xj

k+1)`1Ci
k×Cj

k+1×Cr
k+2

(Xk, Xk+1, Xk+2))

P(Xk ∈ Ci
k)

, (3.7)

` = 1, . . . , d, i = 1, . . . , Nk, j = 1, . . . , Nk+1, r = 1, . . . , Nk+2,

and PV,kU(xi
k) :=

Nk+1∑

j=1

πij
k U(xj

k+1) +
d∑

`=1

Nk+1∑

j=1

Nk+2∑

r=1

π`,ijr
k (V (xr

k+2)− Cj
V,`)

(3.8)

where Cj
V,` are arbitrary real constants to be settled in order to reduce the variance.

Lemma 2 Suppose that U = Pk+1V with V = Pk+1W for some Lipschitz continuous

function W . Then

E
∣∣∣PkU(X̂k)− PV,kU(X̂k)

∣∣∣ ≤ C[W ]1
√

n

N2/d
(3.9)

where C depends on the diffusion coefficients.

Proof. The idea is similar to that in the previous section: we localize on Cj
k+1 and we

use a Taylor expansion

φU
k (xi

k)× P(Xk ∈ Ci
k) = E(U(Xk+1)1Ci

k
(Xk)) =

Nk+1∑

j=1

E(U(Xk+1)1Cj
k+1

(Xk+1)1Ci
k
(Xk))
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=
Nk+1∑

j=1

U(xj
k+1)E(1

Cj
k+1

(Xk+1)1Ci
k
(Xk)) +

+
Nk+1∑

j=1

d∑

`=1

E
(

∂U

∂xl
(Xk+1)(Xk+1 − xj

k+1)`1Cj
k+1

(Xk+1)1Ci
k
(Xk)

)
+ Qi

k

with Qi
k :=

Nk+1∑

j=1

d∑

`,`′=1

E
(

∂2U

∂x`∂x`′
(X ′

k+1)(Xk+1 − xj
k+1)`(Xk+1 − xj

k+1)`′1Cj
k+1

(Xk+1)1Ci
k
(Xk)

)

+
Nk+1∑

j=1

d∑

`=1

E
((

∂U

∂x`
(xj

k+1)−
∂U

∂x`
(Xk+1)

)(
Xk+1 − xj

k+1)`1Cj
k+1

(Xk+1)1Ci
k
(Xk

))

We use (3.6) and we obtain

Nk∑

i=1

E
∣∣Qi

k

∣∣ ≤ C
∥∥∂2U

∥∥
∞
E|Xk+1 − X̂k+1|2 ≤ C[W ]1

√
n

N2/d
. (3.10)

In order to compute ∂U
∂x`

(Xk+1) we use (3.3) with x = Xk+1 and we obtain

∂U

∂x`
(Xk+1) = E

(
(V (θk+1(Xk+1, ∆k+2))− Cj

V,`)ρ
`
k+1(Xk+1,∆k+2)|Xk+1

)

= E
(
(V (Xk+2)− Cj

V,`)ρ
`
k+1(Xk+1,∆k+2)|Xk+1

)
.

Moreover, using the Markov property first and then localization for Xk+2 yield

E
(

∂U

∂x`
(Xk+1)(Xk+1 − xj

k+1)`1Ci
k×Cj

k+1
(Xk, Xk+1)

)

= E
(
(V (Xk+2)− Cj

V,`)ρ
`
k+1(Xk+1, ∆k+2)(Xk+1 − xj

k+1)`1Ci
k×Cj

k+1
(Xk, Xk+1)

)

=
Nk+2∑

r=1

E
(
(V (Xk+2)− Cj

V,`)ρ
`
k+1(Xk+1, ∆k+2)(Xk+1 − xj

k+1)`1Ci
k×Cj

k+1×Cr
k+2

(Xk, Xk+1, Xk+2)
)

=
Nk+2∑

r=1

(V (xr
k+2)− Cj

V,`)E(ρ`
k+1(Xk+1, ∆k+2)(Xk+1 − xj

k+1)`1Ci
k×Cj

k+1×Cr
k+2

(Xk, Xk+1, Xk+2))

+H`,ij
k .

Note that both assumptions (H1) and (H2) imply that

|ρ`
k(x, y)| ≤ C

(
1 +

n

T
|y| (1 + |y|)

)
, (3.11)

hence
∥∥ρ`

k+1(Xk+1, ∆k+2)
∥∥

2
≤ C

√
n/T since

√
T
n ∆k+2 is a standard normal distribution.

Keeping in mind that V is Lipschitz continuous yields

Nk∑

i=1

Nk+1∑

j=1

∣∣∣H`,ij
k

∣∣∣ ≤ C[V ]1
√

n

Nk∑

i=1

E
(
|Xk+2 − X̂k+2||Xk+1 − X̂k+1|1Ci

k
(Xk)

)

≤ C
√

nE
(
|Xk+2 − X̂k+2|2 + |Xk+1 − X̂k+1|2)

)
≤ C

√
n

N2/d
.

10



Finally, using the result from the previous section

E
∣∣∣PkU(X̂k)− PV,kU(X̂k)

∣∣∣

≤ C[W ]1
√

n

N2/d
+ E

∣∣∣φU
k (X̂k)− PV,kU(X̂k)

∣∣∣

≤ C[W ]1
√

n

N2/d
+

Nk∑

i=1

∣∣φU
k (xi

k)− PV,kU(xi
k)

∣∣× P(Xk ∈ Ci
k)

≤ C[W ]1
√

n

N2/d
+

Nk∑

i=1

E
∣∣Qi

k

∣∣ +
d∑

`=1

Nk∑

i=1

Nk+1∑

j=1

∣∣∣H`,ij
k

∣∣∣ ≤ C[W ]1
√

n

N2/d
. ¤

In the algorithm we have in mind we want to compute PkU but we do not have access

to the true value neither of U nor of V but only to some approximations U ′ : Γk+1 → R

and V ′ : Γk+2 → R. So we are interested to evaluate the impact of the error U − U ′ and

V − V ′. The functions U ′ and V ′ are not related by U ′ = PV ′ and this relation makes

actually no sense because these functions are only defined on grids. Anyway, one may

define PV ′,kU
′(xi

k) by (3.8).

Lemma 3 Let U, U ′ : Γk+1 → R, V, V ′ : Γk+2 → R be some functions. For every

p∈ [1, 2), there is a real constant Cp, depending on p, on the diffusion process coefficients

and on the real constant in (2.7), such that

E| (PV,kU − PV ′,kU
′) (X̂k)| ≤ E| (U − U ′) (X̂k+1)|+

Cp

n
E(|(V −V ′)(X̂k+2)|) (3.12)

+Cpn
3
p
−1‖(V −V ′)(X̂k+2)‖ p

p−1
‖Xk+1−X̂k+1‖2/p

2
.(3.13)

Proof. We assume that Cj
V,` = Cj

V ′,` so that these terms disappear when taking the

difference. Moreover, having in mind the expression (3.7) of the weights, one obtains

E|(PV,kU−PV ′,kU
′)(X̂k)| =

Nk∑

i=1

∣∣(PV,kU − PV ′,kU
′) (xi

k)
∣∣P(Xk ∈ Ci

k)

≤ E|(U−U ′)(X̂k+1)|+ E
(
|(V −V ′)(X̂k+2)|

d∑

`=1

|ρ`
k+1(Xk+1, ∆k+2)||Xk+1 − X̂k+1|

)

︸ ︷︷ ︸
=:A

.

Set Zk+2 :=
√

n
T ∆k+2

L∼N (0; Id). Then (3.11) yields

A ≤ C

√
n

T
E(|(V −V ′)(X̂k+2)||Xk+1−X̂k+1|(1 + |Zk+2|)2).

Let p∈ [1, 2) and q := p
p−1 ∈ (2, +∞]. It follows from Holder and Markov inequalities that

A ≤ C E(|(V −V ′)(X̂k+2)|)

+C

√
n

T
‖(V −V ′)(X̂k+2)‖q‖(Xk+1−X̂k+1)(1 + |Zk+2|)21{|Xk+1−bXk+1|(1+|Zk+2|)2≥n−

3
2 }‖p

A ≤ C

n
E(|(V −V ′)(X̂k+2)|) + n

3
p
−1‖(V −V ′)(X̂k+2)‖q‖Xk+1−X̂k+1‖2/p

2
‖(1 + |Zk+2|)

4
p ‖p.
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The last inequality uses that Zk+2 is independent of Ftk+1
. ¤

As an immediate consequence of the above lemmas one obtains

Proposition 4 Let U = PkV with V := Pk+1W where W is a Lipschitz continuous

function on Rd and let U ′ : Γk+1 → R and V ′ : Γk+2 → R be some real functions. Then,

for every p∈ [1, 2), there is a real constant Cp, depending on p, on the diffusion process

coefficients and on the constant in (2.7), such that

E| (PkU − PV ′,kU
′) (X̂k)| ≤ C[W ]1

√
n

N2/d
+ E| (U − U ′) (X̂k+1)|+

Cp

n
E| (V − V ′) (X̂k+2)|

+Cpn
3
p
−1‖(V −V ′)(X̂k+2)‖q‖Xk+1−X̂k+1‖2/p

2
.

3.4 The algorithm for the Snell envelope

In this section we give the analogue of the algorithm in (2.4):

ûn(xi
n) := hn(xi

n), i = 1, . . . , Nn, (3.14)

ûk(xi
k) := max

(
hk(xi

k), P̂kûk+1(xi
k)

)
with P̂kûk+1 := Pbuk+2,kûk+1, 0 ≤ k ≤ n− 2

and P̂n−1ûn(xi
k) :=

∑Nn
j=1 πij

n−1h(xj
n). (Keep in mind that

P̂kûk+1(xi
k) =

Nk+1∑

j=1

πij
k uk+1(x

j
k+1)+

d∑

`=1

Nk+1∑

j=1

Nk+2∑

r=1

π`,ijr
k (uk+1(xr

k+2)−Cj
uk+1,`), 0 ≤ k ≤ n−2.

so that the definition of π`,ijr
k makes no sense for k = n − 1). The constants Cj

uk+1,`

are to be chosen in order to reduce the variance. Now we would like to evaluate the

error induced by our algorithm. However, we deal with a nonlinear problem since uk =

max(hk, Pkuk+1) 6= Pkuk+1 and some trouble appears – at least theoretically – in the

computation of ∂Pkuk+1 when hitting the obstacle. It seems difficult at this stage to

provide an accurate description of this error although this difficulty occurs rather seldom.

Furthermore the derivatives appear in the correctors, so they are already multiplied by

small quantities. Anyway, numerical evidence show that things work well.

Whatsoever, to carry out our error estimates rigorously, we will behave as if we were

solving a linear problem (namely computing E(hn(Xn)) using a “linear” dynamic pro-

gramming formula i.e. removing the max).

A standard argument shows that, for every q∈ (2, +∞), sup0≤k≤n, n∈N ‖uk+1(X̂k+1)‖q <

+∞ if h has linear growth (this holds for q = +∞ if h is bounded). Then Proposition 4

applied with U := uk+1, V := uk+2, U ′ := ûk+1, V ′ := ûk+2 leads to

E|uk(X̂k)−ûk(X̂k)| ≤ E|Pkuk+1(X̂k)−P̂kûk+1(X̂k)| = E|Pkuk+1(X̂k)−Pbuk+2,kûk+1(X̂k)|

≤ C
√

n

N2/d
+E|(uk+1−ûk+1)(X̂k+1)|+

Cp

n
E|(uk+2−ûk+2)(X̂k+2)|

+Cpn
3
p
−1‖Xk+1 − X̂k+1‖2/p

2

12



(where Cp also depends on h now). Iterating the above inequality yields,

∀ k∈ {0, . . . , n}, E|uk(X̂k)− ûk(X̂k)| ≤ Cn
√

n

N2/d
+ Cpn

3
p
−1

n∑

k′=0

‖Xk′+1 − X̂k′+1‖2/p
2

.

Let us evaluate the impact of this inequality. If the marginal distributions are appropri-

ately dominated (see [3]) – or at least heuristically – the optimality of the grids implies

that sup0≤k≤n,n∈N ‖Xk+1− X̂k+1‖2 ≤ CN− 1
d . This finally yields the following global error

bound: for every ε := p−1
p ∈ (0, 1/2) (including ε = 0 if h is bounded),

|Y0 − û0(x0)| ≤ C

nα
+ |u0(x0)− û0(x0)| ≤ C

nα
+ Cε

(
n3

N2/d

)1−ε

(3.15)

for some real constant Cε > 0. If h is semi-convex, then α = 1 and if h is simply Lipschitz

continuous, α = 1
2 . This leads to the conjecture that the following error bounds hold true:

Conjecture: Let ε∈ (0, 1/2) and suppose that N ≥ n( 3+α
2

+ε)d. Then

|Y0 − û0(x0)| ≤ C2

nα
(3.16)

where α = 1/2 under (H1) and α = 1 under (H2). When h is also bounded, one may take

ε = 0. The constant Cε depends on the diffusion coefficients and on the constant in (2.7).

Comments. With the original 0th order algorithm, one needs N =n2d+1 in order to get

an error of order 1/n (when (H2) holds true and the true diffusion (Xtk) is quantized,

see Theorem 5 in [3]). Still with this original algorithm, one needs N = n
3
2
d+ 1

2 in order

to get an error of order 1/
√

n (when (H1) holds true and the Euler scheme is quantized,

see [3]). So the theoretical gain derived from the above estimate may look poor. In fact,

the above theoretical error bounds are probably not very sharp, especially because of

Lemma 3. However, in view of Proposition 3 and Lemma 2 which evaluate “locally” the

improvements brought by the 1st-order algorithm, one may hope to replace n3 in (3.15)

by a smaller coefficient, possibly n
√

n. Anyway, one verifies on numerical experiements

that there is definitely a significant gain, especially for medium dimensions (d ≤ 6).

3.5 Geometrical interpretation

We mentioned above that the 1−schemes correspond to the linear interpolation for the

function uk+1. The aim of this subsection is to make this assertion more precise. For

simplicity we consider the one dimensional case only. So the points xj
k ∈ R and we denote

Ii
k := [xi

k, x
i+1
k ). We also denote

u′,rk+1(x
j
k+1) :=

uk+1(x
j+1
k+1)− uk+1(x

j
k+1)

xj+1
k+1 − xj

k+1

, u′,`k+1(x
j
k+1) :=

uk+1(x
j
k+1)− uk+1(x

j−1
k+1)

xj
k+1 − xj−1

k+1

and we think of u′,rk+1(x
j
k+1) (respectively of u′,`k+1(x

j
k+1)) as an approximation of the right

hand side (respectively of the left hand side) derivative of uk+1 at xj
k+1. The linear

13



interpolation for {uk+1(x
j
k+1), j = 1, . . . , Nk+1} on [x1

k+1, x
Nk+1

k+1 ] is given by

ũk+1(y) =
∑

1≤j≤Nk+1

1
Ij
k+1

(y)
(
uk+1(x

j
k+1) + u′,rk+1(x

j
k+1)(y − xj

k+1)
)

In order to express this in terms of Voronoi tessels we denote −→C j

k+1 = [xj
k+1,

xj
k+1+xj+1

k+1

2 )

and ←−C j

k+1 = (
xj−1

k+1+xj
k+1

2 , xj
k+1) so that Cj

k+1 = ←−
C

j

k+1 ∪ −→C
j

k+1 and Ij
k+1 = −→

C
j

k+1 ∪←−C
j+1

k+1.

With this notation

ũk+1(y) =
∑

1≤j≤Nk+1

1
Cj

k+1
(y)uk+1(x

j
k+1)

+
∑

1≤j≤Nk+1

(1−→
C

j

k+1

(y)u′,rk+1(x
j
k+1)(y − xj

k+1) + 1←−
C

j

k+1

(y)u′,`k+1(x
j
k+1)(x

j
k+1 − y)).

As long as we are far from the free boundary, the above expressions yield

uk(xi
k) = E(ũk+1(Btk+1

)|Btk = xi
k) =

∑

1≤j≤Nk+1

uk+1(x
j
k+1)E(1

Cj
k+1

(Btk+1
)|Btk = xi

k)

+
∑

1≤j≤Nk+1

E
(
1−→

C
j

k+1

(Btk+1
)(Btk+1

− xj
k+1)|Btk = xi

k

)
u′,rk+1(x

j
k+1)

+
∑

1≤j≤Nk+1

E
(
1←−

C
j

k+1

(Btk+1
)(xj

k+1 −Btk+1
)|Btk = xi

k

)
u′,`k+1(x

j
k+1).

So the linear interpolation may be seen as a Taylor expansion of order one, with the

derivative approximated by finite differences (in a different way in the left hand side and

in the right hand side). This is exactly what we are doing in the 1− schemes. The only

difference concerns the approximation that we use for the first order derivatives. The

reason for which we do not use finite differences approximations is because this kind of

scheme is not available in the multi-dimensional case, when the grid is not regular (we

mean hypercubes): optimal grids are never regular.

Let us now come back to our way of computing derivatives. We stress that this is

based on the fact that uk+1(x
j
k+1) is itself an expectation. The formula

u′k+1(x
j
k+1) = E

(
(uk+2(θk(x

j
k+1, ∆k+2))− C)ρ1

k(x
j
k+1,∆k+2)

)

gives a pathwise interpretation of the derivative and this is the basic fact which allows us

to compute the derivatives using a Monte Carlo method.

There is one more difference between our method and the linear interpolation method.

In the computation of u′k+1(x
j
k+1) using the finite difference method one uses two values

of uk+1: at xj
k+1 and at xj+1

k+1 (respectively in xj−1
k+1). In our method we do not use the

values of uk+1 but of uk+2. Moreover, we use all the values (uk+2(x
j
k+2))1≤j≤Nk+2

. Finally

we stress that our interpolation is piecewise linear but not continuous.
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3.6 Numerical experiments

We now present numerical experiments on pricing American exchange style options based

on algorithms (2.4) and (3.14) in dimension 4, 6 and 10. The obstacle chosen here is the

following exchange style pay-off

h(t, St) =
(
S1

t . . . S
d/2
t − S

d/2+1
t . . . Sd

t

)
+

,

where t ∈ [0, T ] and where the d-dimensional price process {St}t∈[0,T ] follows a standart

Blake-Sholes model with null interest rate, a dividend rate vector µ = [5%, 0, . . . , 0]t and a

diagonal constant volatility matrix σ = diag(σ1, . . . , σd) with σi =
√

2/d 20%. The initial

conditions are Si
0 = (40)2/d for i ∈ {1, . . . , d/2} and Si

0 = (36)2/d for i ∈ {d/2 + 1, . . . , d}.
In the following simulations, we have set the maximal maturity time T = 1 year and

the time step T/n with n = 24 (dimension 4 and 6), n = 48 (dimension 10). The number

of points on the top layer is N24 = 500 (dimension 4), N24 = 1000 (dimension 6) and

N48 = 1000 (dimension 10). The number of points per time layer is then fixed as explained

in Section 2.3. We have to point out here that due to the fact that the price process is an

explicit function of the Brownian motion, the computations of the weights (2.3) and (3.7)

are done for the d-dimensional Brownian motion. This part of the computation is then

parameter free and have to be done once for all. Therefore algorithms (2.4) and (3.14) can

be used for every choice of parameter (dividend rate, volatilities, initial conditions) with

the same weights. We denote by AM0(0, T ) (resp. AM1(0, T )) the price at time t = 0 and

maturity T computed with (2.4) (resp. with (3.14)). Finally, we denote by AMref (0, T )

a reference price performed in dimension 2 by a finite difference scheme on the associated

PDE formulation [7] with σ1 = σ2 = 20%, µ1 = 5%, µ2 = 0, S1
0 = 40 and S2

0 = 36.

In Table 1, the relative error of AM0(0, T ) and AM1(0, T ) with respect to AMref (0, T )

are displayed. First we observe that in every case the relative errors do not overcome 4%

for 12 months and 2% for 6 months. For 6 months of maturity, the corrected weights seems

to be very pertinent in every dimension since it reduces the relative errors by a factor of

30 up to 50. As maturity grows up (9 and 12 months), the correction remains usefull for

d = 4 and d = 6 in order to reduce below 1% the relative error. The use of corrected

terms in dimension 10 for these maturities seems not to be very relevant. Indeed, in this

case, the optimization of the grids is very hard to achieve. Therefore the approximation

of the weights is no more consistent because we have to take into account the bottom error

(see section 3.2). But taking into account those corrections is pratically untractable in

this dimension due to the high cost of the storage. This shows the great importance of

optimal grids in high dimension.
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Maturity 3 months 6 months 9 months 12 months

AMref 4.4110 4.8969 5.2823 5.6501

Price Error (%) Price Error (%) Price Error (%) Price Error (%)

d = 4

AM0 4.4076 0.08 4.9169 0.34 5.3284 0.82 5.7366 1.39

AM1 4.4058 0.1 4.8991 0.04 5.2881 0.08 5.6592 0.13

d = 6

AM0 4.4156 0.1 4.9276 0.63 5.3550 1.38 5.7834 2.20

AM1 4.4099 0.02 4.8975 0.01 5.3004 0.34 5.6557 0.10

d = 10

AM0 4.4317 0.47 4.9945 2.00 5.4350 2.89 5.8496 3.53

AM1 4.4194 0.19 4.8936 0.07 5.1990 1.58 5.4486 3.56

Table 1: Relative errors of AM0 and AM1 with respect to a reference price for different

maturities and dimensions.
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